Guillaume Fleury
Full professor
Nanostructured block copolymer thin films constitute an elegant tool to generate complex periodic patterns with periodicities ranging from a few nanometers to hundreds of nanometers. Such well-organized nanostructures are foreseen to enable next-generation nanofabrication research with potent applications in the design of functional materials in biology, optics or microelectronics. This valuable platform is, however, limited by the geometric features attainable from diblock copolymer architectures considering the thermodynamic drive force leaning toward the formation of structures minimizing the interface between the blocks. Therefore, strategies to enrich the variety of structures obtained by block copolymer self-assembly processes are explored and we focus our research on the methods to fabricate three dimensional nanostructures from iterative self-assembly while considering the emerging strategies for the generation of hybridized functional structures.